Synthesis of Bromoalkenes and Alkylidene Dibromides by Reactions of Carbonyl Compounds with $\mathbf{2 , 4 , 4 , 6}$-Tetrabromo-2,5-cyclohexadienone in the Presence of Triphenylphosphine

E. D. Matveeva, D. B. Feshin, and N. S. Zefirov
Faculty of Chemistry, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia

Received June 2, 2000

Abstract

Reactions of aliphatic and aromatic aldehydes with the 2,4,4,6-tetrabromo-2,5-cyclohexadienonetriphenylphosphine complex result in formation of the corresponding geminal dibromides. Ketones react with the same complex to give vinyl bromides.

We previously showed that 2,4,4,6-tetrabromo-2,5cyclohexadienone in the presence of triphenylphosphine is an efficient and mild reagent replacing the hydroxy group by bromine in alcohols [1, 2] and carboxylic acids [2]. The goal of the present work was to examine reactions of the system 2,4,4,6-tetra-bromo-2,5-cyclohexadienone-triphenylphosphine (I) with aliphatic and aromatic carbonyl compounds. As model reaction we chose that between complex I and octanal. In order to optimize the reaction conditions we varied the solvent, the reactant ratio, and the order of their mixing.

Taking into account that only one bromine atom in the molecule of 2,4,4,6-tetrabromo-2,5-cyclohexadienone (II) is active, the stoichiometric reactant ratio carbonyl compound-tetrabromide II-triphenylphosphine (III) should be $1: 2: 2$. Just this ratio was used in the present study. It should be noted that application of excess reagent (ratio $1: 3: 3$) did not increase the yield of the target products.

The major product of the reaction of \mathbf{I} with octanal was 1,1-dibromooctane (IV); also, 2,4,6-tribromophenol and triphenylphosphine oxide were formed. As solvents we tried acetonitrile, methylene chloride, and benzene. The best yields were obtained in boiling benzene. The order of mixing of the reactants also
affects the product yield. When tetrabromocyclohexadienone II and phosphine III were mixed before addition of an aldehyde, the yield was lower. The optimal yield of 1,1 -dibromooctane (IV) (83%) was obtained when reagent II was added to a solution of triphenylphosphine and octanal in benzene (Table 1).

The procedure is general, and it can also be used to synthesize other geminal dibromides of the aliphatic series. We thus converted dodecanal and heptadecanal into 1,1-dibromododecane and 1,1-dibromoheptadecane, respectively, in 95 and 78% yield. We also tried to involve in this process aromatic aldehydes. By reaction of benzaldehyde with complex I we obtained benzylidene dibromide in 90% yield. The yield of p-bromobenzylidene dibromide from p-bromobenzaldehyde was 62%. p - and m-Nitrobenzaldehydes reacted with complex I to afford 43 and 35% of p - and m-nitrobenzylidene bromides, respectively (Table 2).

Table 1 Reaction of octanal with the complex 2,4,4,6-tetrabromo-2,5-cyclohexadienone-triphenylphosphine

Solvent	Yield of 1,1-dibromooctane, \%	
	method a^{a}	method b^{b}
Acetonitrile Methylene chloride Benzene	30	55

[^0]The purity of the products was checked by GLC. Their structure was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectra of 1,1-dibromoalkanes contain a triplet at $\delta 5.7 \mathrm{ppm}$ from the terminal CH proton and a multiplet at $\delta 2.4 \mathrm{ppm}$ from the neighboring methylene group. The corresponding carbon signals appear in the ${ }^{13} \mathrm{C}$ NMR spectra at $\delta_{\mathrm{C}} 46.3$ and 45.4 ppm , respectively, in keeping with published data [3-6].

In the reaction of complex \mathbf{I} with cyclohexanone the only product was 1-bromocyclohexene. Its highest yield (75%) was obtained in methylene chloride. By reactions of \mathbf{I} with acetophenone and 1,3-cyclohexanedione we obtained, respectively, α-bromostyrene (52\%) and 3-bromo-2-cyclohexenone (88\%) (Table 3). Benzophenone failed to react with complex I. The structure of the resulting bromoalkenes was confirmed by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra which were consistent with published data (see Experimental).

To conclude we can state that we have developed a procedure for preparation of terminal geminal dibromoalkanes from aliphatic and aromatic aldehydes. Ketones react with complex \mathbf{I} to give exclusively the corresponding bromoalkenes, and an additional study is to be performed in order to elucidate how the ketone structure affects the reaction direction.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a VXR-400 instrument (400 MHz for ${ }^{1} \mathrm{H}$) using tetramethylsilane as internal reference. GLC analysis was performed on a Chrom-5 chromatograph equipped with a flame-ionization detector (SE-30 quartz capillary column, $25 \mathrm{~m} \times 0.25 \mathrm{~mm}$; carrier gas helium). The progress of reactions was monitored by TLC on Silufol plates; the chromatograms were developed first with iodine vapor and second with aqueous potassium permanganate. Preparative column chromatography was performed on silica gel (Merck 60, 70-230 mesh, and Chemapol, $5 / 40$ and $40 / 100 \mu \mathrm{~m}$).

Acetonitrile was refluxed over $\mathrm{P}_{2} \mathrm{O}_{5}$, distilled, and stored over calcium hydride. Methylene chloride was refluxed over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled. Benzene was refluxed over metallic sodium and distilled. Triphenylphosphine (III) was recrystallized from 2-propanol and dried in a vacuum.

2,4,4,6-Tetrabromo-2,5-cyclohexadienone (II). A mixture of $15 \mathrm{~g}(0.086 \mathrm{~mol})$ of p-bromophenol, 45 ml of ethyl alcohol, and 45 ml of acetic acid was cooled in an ice bath, and $13 \mathrm{ml}(0.255 \mathrm{~mol})$ of bromine was added from a dropping funnel over a period of 20 min . The mixture was stirred for 1 h

Table 2. Reactions of the 2,4,4,6-tetraboromo-2,5-cyclo-hexadienone-triphenylphosphine complex with aldehydes; temperature $79^{\circ} \mathrm{C}$

Product	Time, h	Yield, $\%$
1,1-Dibromooctane	72	83
1,1-Dibromododecane	72	95
1,1-Dibromoheptadecane	72	75
Benzylidene dibromide p-Bromobenzylidene dibromide p-Nitrobenzylidene dibromide m-Nitrobenzylidene dibromide	18	90

and poured into a solution of 21 g of NaHCO_{3} in 180 ml of water. When gaseous products no longer evolved, the precipitate was filtered off, washed with hexane, dried in air, and recrystallized from chloroform. Yield 31 g (87%), mp $142^{\circ} \mathrm{C}$ [7].

Benzylidene dibromide. To a solution of 3.24 g (0.0123 mol) of triphenylphosphine in 15 ml of dry benzene we added with stirring under argon 0.525 g $(0.00495 \mathrm{~mol})$ of benzaldehyde in 2 ml of benzene. 2,4,4,6-Tetrabromo-2,5-cyclohexadienone, 5.07 g (0.0123 mol), was then added, and the mixture was refluxed for 18 h . The mixture was filtered through a layer of silica gel and evaporated, and the residue was subjected to column chromatography using a 5% solution of ether in hexane as eluent. Yield 1.115 g (90%). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 6.65 \mathrm{~s}$ $\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right), 7.3-7.4 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)(\mathrm{cf} .[4,8]) ;{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 41.11, 126.44, 128.65, 129.85, 141.86 (cf. [4]).

4-Bromobenzylidene dibromide. Following the above procedure, from $0.733 \mathrm{~g}(0.00283 \mathrm{~mol})$ of triphenylphosphine, $0.25 \mathrm{~g}(0.00135 \mathrm{~mol})$ of p-bromobenzaldehyde, and $1.163 \mathrm{~g}(0.0283 \mathrm{~mol})$ of $2,4,4,6-$ tetrabromo-2,5-cyclohexadienone we obtained (after chromatographic purification using $1: 4$ toluenehexane as eluent) 275 mg (62%) of 4-bromobenzylidene dibromide. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, δ, ppm: $6.59 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right), 7.4-7.55 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 39.61, 123.82, 128.09, 131.79, 140.87.

3-Nitrobenzylidene dibromide was synthesized in a similar way from $1.82 \mathrm{~g}(0.00695 \mathrm{~mol})$ of triphenylphosphine, $0.5 \mathrm{~g}(0.0033 \mathrm{~mol})$ of m-nitrobenzaldehyde, and $2.85 \mathrm{~g}(0.00695 \mathrm{~mol})$ of 2,4,4,6-tetra-bromo-2,5-cyclohexadiene. Chromatographic purifica-

Table 3. Reactions of complex I with ketones ${ }^{\text {a }}$

Initial ketone	Product	Solvent	Temperature, ${ }^{\circ} \mathrm{C}$	Time, h	Yield, $\%$
Cyclohexanone	1-Bromocyclohexene	Acetonitrile	81	24	30
		Methylene chloride	40	24	75
1,3-Cyclohexanedione	3-Bromo-2-cyclohexenone	Methylene chloride	40	24	20
Acetophenone			24	88	

${ }^{\text {a }}$ Ratio ketone-2,4,4,6-tetrabromo-2,5-cyclohexadienone-triphenylphosphine 1:2:2.
${ }^{\text {b }}$ Ratio ketone-2,4,4,6-tetrabromo-2,5-cyclohexadienone-triphenylphosphine 1:4:4.
tion using 1:4 toluene-hexane as eluent gave 335 mg (35%) of 3-nitrobenzylidene dibromide. ${ }^{1} \mathrm{H}$ NMR spectrum (acetone- d_{6}, HMDS), δ, ppm: $7.29 \mathrm{~s}(1 \mathrm{H}$, $\left.\mathrm{CHBr}_{2}\right), 7.72 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.06-8.1 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $8.18-8.22 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.44 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, (acetone- d_{6}), δ_{C}, ppm: 38.74, $120.05,123.3,129.43,129.98,131.82,143.11$.

4-Nitrobenzylidene dibromide was synthesized in a similar way from $0.91 \mathrm{~g}(0.0034 \mathrm{~mol})$ of triphenylphosphine, $0.25 \mathrm{~g}(0.00165 \mathrm{~mol})$ of p-nitrobenzaldehyde, and $1.425 \mathrm{~g}(0.0034 \mathrm{~mol})$ of 2,4,4,6-tetrabromo-2,5-cyclohexadienone. Chromatographic purification with $1: 4$ toluene-hexane as eluent gave 220 mg (43%) of 4-nitrobenzylidene dibromide. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $6.58 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right), 7.73-$ $7.77 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.23-8.27 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$ (cf. [9]). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 38.13, 124.03, 127.71, 134.89, 147.82.

1,1-Dibromooctane (IV) was obtained in a similar way from $2.56 \mathrm{~g}(0.00976 \mathrm{~mol})$ of triphenylphosphine, $0.5 \mathrm{~g}(0.0039 \mathrm{~mol})$ of octanal, and $4.0 \mathrm{~g}(0.00976 \mathrm{~mol})$ of 2,4,4,6-tetrabromo-2,5-cyclohexadienone, followed by chromatographic purification with a 5% solution of ethyl acetate in hexane. Yield $835 \mathrm{mg}(83 \%) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $0.91 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.2-1.4 \mathrm{~m}\left[10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right], 1.5-1.6 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHBr}_{2}\right), 2.39 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHBr}_{2}\right), 5.7 \mathrm{t}$ $\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right)(\mathrm{cf} .[3,5]) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, δ_{C}, ppm: 14.06, 22.59, 28.08, 28.21, 28.99, 31.65, 45.45, 46.31.

1,1-Dibromododecane was obtained in a similar way from $1.78 \mathrm{~g}(0.00679 \mathrm{~mol})$ of triphenylphosphine, $0.5 \mathrm{~g}(0.00272 \mathrm{~mol})$ of dodecanal, and 2.784 g (0.00679 mol) of 2,4,4,6-tetrabromo-2,5-cyclohexadienone. Chromatographic purification using a 5\% solution of ethyl acetate in hexane gave $840 \mathrm{mg}(95 \%)$ of 1,1-dibromododecane. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$,
ppm: $0.91 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.2-1.4 \mathrm{~m}\left[16 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right]$, $1.5-1.6 \mathrm{~m}\left(2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHBr}_{2}\right), 2.39 \mathrm{~m}(2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHBr}_{2}$), $5.7 \mathrm{t}\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 14.12, 22.69, 28.08, 28.25, 29.33 (2C), 29.45, 29.57 (2C), 31.89, 45.44, 46.18.

1,1-Dibromoheptadecane was synthesized in a similar way from $1.29 \mathrm{~g}(0.00492 \mathrm{~mol})$ of triphenylphosphine, $0.5 \mathrm{~g}(0.00196 \mathrm{~mol})$ of heptadecanal, and $2.015 \mathrm{~g}(0.00492 \mathrm{~mol})$ of 2,4,4,6-tetrabromo-2,5cyclohexadienone. The product was purified by chromatography using a 5% solution of ethyl acetate in hexane. Yield $580 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $0.91 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.4 \mathrm{~m}[26 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{13} \mathrm{CH}_{3}\right], 1.5-1.6 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHBr}_{2}\right)$, $2.39 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHBr}_{2}\right), 5.7 \mathrm{t}\left(1 \mathrm{H}, \mathrm{CHBr}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 14.13, 22.09, $22.71,28.27,29.35,29.38,29.47,29.59,29.65,29.68$ (3C), 29.72 (2C), 31.93, 45.46, 46.29.

1-Bromocyclohexene was synthesized in a similar way from $3.16 \mathrm{~g}(0.012 \mathrm{~mol})$ of triphenylphosphine, $0.5 \mathrm{~g}(0.00483 \mathrm{~mol})$ of cyclohexanone, and 4.95 g (0.012 mol) of 2,4,4,6-tetrabromo-2,5-cyclohexadienone in dry methylne chloride. The product was purified by chromatography using a 5% solution of ethyl acetate in hexane. Yield 525 mg (75%). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $1.5-1.9 \mathrm{~m}(4 \mathrm{H})$, $2.0-2.2 \mathrm{~m}(2 \mathrm{H}), 2.35-2.45 \mathrm{~m}(2 \mathrm{H}), 6.0-6.05 \mathrm{~m}(1 \mathrm{H})$ (cf. [10]). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: $21.04,24.43,27.35,35.10,122.25,128.77$.

3-Bromo-2-cyclohexenone was synthesized in a similar way from $1.23 \mathrm{~g}(0.0468 \mathrm{~mol})$ of triphenylphosphine, $0.25 \mathrm{~g}(0.00223 \mathrm{~mol})$ of 1,3-cyclohexanedione, and $1.92 \mathrm{~g}(0.0468 \mathrm{~mol})$ of 2,4,4,6-tetrabromo-2,5-cyclohexadienone in dry methylene chloride. The product was purified by chromatography using $1: 1$ hexane-chloroform as eluent. Yield 345 mg (88%). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $1.9-2.05 \mathrm{~m}$
$(2 \mathrm{H}), 2.2-2.35 \mathrm{~m}(2 \mathrm{H}), 2.65-2.8 \mathrm{~m}(2 \mathrm{H}), 6.4 \mathrm{t}(1 \mathrm{H})$ (cf. [11]). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: $22.83,36.13,36.26,132.46,149.91,196.08$ (cf. [12]).
α-Bromostyrene was synthesized in a similar way from $1.14 \mathrm{~g}(0.0024 \mathrm{~mol})$ of triphenylphosphine, $0.25 \mathrm{~g}(0.002 \mathrm{~mol})$ of acetophenone, and 1.79 g $(0.0042 \mathrm{~mol})$ of $2,4,4,6$-tetrabromo-2,5-cyclohexadienone in o-dichlorobenzene. Subsequent chromatographic separation (using petroleum ether as eluent) gave 450 mg of a mixture of o-dichlorobenzene and α-bromostyrene at a ratio of 7:1 (according to the ${ }^{1} \mathrm{H}$ NMR data). The yield of α-bromostyrene was 15%. It was identified by the signals of the methylene [δ, ppm: $5.76 \mathrm{~d}(1 \mathrm{H}), 6.10 \mathrm{~d}(1 \mathrm{H})]$ and aromatic protons [$\delta, \mathrm{ppm}: 7.42$ (5H)] (cf. [13]).

Reaction of complex I with benzophenone. A mixture of $0.863 \mathrm{~g}(0.00329 \mathrm{~mol})$ of triphenylphosphine, $0.2 \mathrm{~g}(0.0011 \mathrm{~mol})$ of benzophenone, and 1.348 g of 2,4,4,6-tetrabromo-2,5-cyclohexadienone in dry methylene chloride, anhydrous acetone, or anhydrous toluene was refluxed for 3 days. Chromatographic separation using 1:1 hexane-benzene gave 99% of initial benzophenone (retention time 3.72 min ; oven temperature $220^{\circ} \mathrm{C}$, injector temperature $270^{\circ} \mathrm{C}$).

REFERENCES

1. Matveeva, E.D., Podrugina, T.A., and Zefirov, N.S., Mendeleev Commun., 1998, no. 1, pp. 21-23.
2. Matveeva, E.D., Podrugina, T.A., Sandakova, N.G., and Zefirov, N.S., Sbornik trudov konferentsii "Peterburgskie vstrechi-98" (Proc. Conf. "St. Petersburg Meetings-98"), St. Petersburg, 1998, p. 175.
3. Villieras, J., Tarhouni, R., Kirscheger, B., and Rambaund, M., Bull. Soc. Chim. Fr., 1985, no. 5, p. 825 .
4. Hoffmann, R.W. and Bovicelli, P., Synthesis, 1990, p. 657.
5. Martinez, A.G., Fernandez, A.H., Alvarez, M.R., Fraile, A.G., Calderon, J.B., and Barcina, J.O., Synthesis, 1986, no. 12, pp. 1076-1078.
6. Kuchin, V.A., Markova, S.A., and Tolstikov, G.A., Zh. Obshch. Khim., 1988, vol. 58, no. 4, p. 934.
7. Tsubota, M., Iso, M., and Suzuki, K., Bull. Chem. Soc. Jpn., 1972, vol. 45, no. 4, p. 1252.
8. The Aldrich Library of NMR Spectra, 1974, vol. IV, p. 38.
9. Mironov, V.F., Ofitserov, E.N., Sinyashina, T.N., and Konovalova, I.V., Zh. Org. Khim., 1990, vol. 26, no. 12, p. 2570.
10. Newnan, H. and Seebah, D., Chem. Ber., 1978, vol. 111, no. 8, pp. 2785-2812.
11. Piers, E., Grierson, J.R., Lan, Ch.K., and Nikagura, I., Can. J. Chem., vol. 60, no. 2, p. 210.
12. Hofle, G., Tetrahedron, 1976, vol. 32, no. 12, p. 1431.
13. Soderquist, J.A. and Hassner, A., J. Org. Chem., 1983, vol. 48, no. 11, p. 1801.

[^0]: ${ }^{\text {a }}$ Preliminary preparation of complex \mathbf{I}.
 ${ }^{\text {b }}$ 2,4,4,6-Tetrabromo-2,5-cyclohexadienone was added last.

